How Are Streams Different from Landscapes? Evolving Approaches for Data Analysis in Stream Networks

Rebecca Flitcroft

USDA Forest Service, PNW Research Station, Corvallis, Oregon, USA

Landscape concepts

Suryan et al. 2012 Marine Ecology Progress Series

Spatial Autocorrelation Spatial Statistics

- Spatial autocorrelation:
 - Moran's I
 - Geary's C
 - Getis's G
 - Standard deviational ellipse

Spatial interpolation

- Inverse distance weighting
- Kriging
- Spatial regression
 - Geographically weighted regression
 - Markov Chain Monte Carlo methods

Advantages of a Landscape Approach

Figure 2. Probability of favorable wolf habitat for Minnesota, northern Wisconsin, and upper Michigan, based on a logistic model using road density as the predictor variable. Modified from Mladenoff and colleagues (1995). Miller et al. 2004 BioScience

Spatial Statistical Software

SAS ArcGIS Stata **Systat** PASSaGE SaTScan R **PySAL**

Quantum GIS **GRASS** Legacy **STARS** GeoDaSpace GeoDaNet SANET Minerva

Oregon Coast Range

Photo from NASA; Ganio et al. 2005

Interconnected
Directionality of flow for biotic and abiotic elements
All elements of the network are related to one another

Dendritic

Ecological Concepts: Landscapes to Riverscapes

(b)

Similar Challenges in Analysis of Rivers and Landscapes

1. Scale-dependence

Basin 10⁵ - 10⁶ m egment lo mabite Reach

Fausch et al. 2002

Similar Challenges in Analysis of Rivers and Landscapes

2. Mobility and Life History

Cote et al. 2009 Dendritic Connectivity Index

Similar Challenges in Analysis of Rivers and Landscapes 3. Habitat changes over time

Distribution: Juveniles Adults Ð Productivity: c High Ð Moderate ÷ ⊆ S Low ð S 0 a 0 2 3 Watersheds Time, in hundreds of years

How River Structure Confounds Spatial Statistical Methods

1. Directional, constrained, correlation

How River Structure Confounds Spatial Statistical Methods

2. Network Configuration

300			11		
		1	En la		
				Nº 4	
giar			1	No.	
de la constante	R. ST	A.			

Fagan, 2002

Avoiding Correlation Altogether Not so fast.... GRTS - EPA

Larsen et al. 2009 J. of Ag, Bio, Envr Stats

Spatially **Balanced** Designs Allow for Trend Detection and Monitoring

What About the Riverscape Story?

Fausch et al. 2002 BioScience

Quantifying spatio-temporal complexity

Rieman and Isaak 2010 from Stewart et al. 2005

Figure 11.12. Temperature and precipitation changes over North America from the MMD-A1B simulations. Top row: Annual mean, DJF and JJA temperature change between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top, but for fractional change in precipitation. Bottom row: number of models out of 21 that project increases in precipitation.

IPCC Fourth Assessment Report 2007

Studies of riverine fishes

Emerging Analytical Approaches that are Network Specific

Fullerton et al. 2010, Freshwater Biology 55:2215-2237

Spatial Extent in River Networks

Burnett et al. 2006 American Fisheries Society Symposium 48

What does "Distance" mean for aquatic species?

Statistical Innovations

Network metrics

 Can be used with common statistics **Graph Theory**

- Hierarchy
- Weighted

Statistics that use network structure

- Variograms
- Flow Directed correlation

Statistical Innovations Network Metrics

Proximity along the network

Flitcroft et al. 2012 Aquatic Conservation

PCA Network Variables

△ Decrease△ Increase

Size of triangle corresponds to distance to spawning.

Statistical Innovations

Network Structure

Variogram Patterns

Nested Spatial Structure?

Five Rivers (299.95 km) Alsea River Basin Detrended Juvenile Coho Salmon Density

Extent Matters

Flow Routing

Peterson and Ver Hoef 2010 – connectivity metrics

Network Based Prediction

Statistical Innovations

Graph Theory

Eros et al. 2011 Landscape Ecology

Graph Theory

Stream Hierarchy

Eros et al. 2011 Landscape Ecology

Fragmentation

Weighted Graphs

Eros et al. 2011 Landscape Ecology

Why this matters

So ecology drives analysis, rather than available statistics.

Bull Trout Fire Effects

-Fire likelihood Post-Fire -Pre-fire Habitat Habitat

External Recolonization Potential

Internal Recolonization Potential

Vulnerability

Patch and Fire Size

Combining Upslope with In-Stream

Probability of Sediment Delivery to High Intrinsic Potential Stream

> 10% > 50%

Olson and Burnett 2009

Linkage Areas for Amphibian Dispersal

Multispecies management across scales

Conclusions

- The complexity of issues surrounding freshwater systems requires the development of new, innovative, and creative analytical and managerial approaches.
- While continuing to challenge our thinking, multi-scale spatial and temporal work focusing on entire stream networks is an expanding area of research.

